Evento de muestreo

Acoustic monitoring data of avian species inside and outside the evacuation zone of the Fukushima Daiichi power plant accident

Última versión Publicado por National Institute of Genetics, ROIS en 16 de mayo de 2022 National Institute of Genetics, ROIS
Fecha de publicación:
16 de mayo de 2022
Licencia:
CC-BY 4.0

Descargue la última versión de los datos como un Archivo Darwin Core (DwC-A) o los metadatos como EML o RTF:

Datos como un archivo DwC-A descargar 2.071 registros en Inglés (998 KB) - Frecuencia de actualización: annual
Metadatos como un archivo EML descargar en Inglés (19 KB)
Metadatos como un archivo RTF descargar en Inglés (18 KB)

Descripción

Large-scale land abandonment and reconstruction activity has altered the ecosystem structure in the evacuation area for the Fukushima Daiichi power plant accident in 2011. Despite social concerns about changes in the avian assemblages that occurred after the accident, publicly accessible data are quite limited. We engaged in acoustic monitoring of birds using digital voice recorders from 2014 in and around the Fukushima evacuation zone. All monitoring sites were located within schoolyards (including those that had been converted to community centers) to examine the bird assemblages in the urban and rural landscapes that were heavily altered by land abandonment due to the nuclear plant accident. A digital voice recorder was installed at each monitoring site during May–July, and we recorded 20 minutes a day using timer-recording mode. We divided the audio data into 1-minute segments and identified species occurred in sampled segments by experts. These data represent the presence-absence records from 52 sites monitored in 2014, 57 sites monitored in 2015, 54 sites monitored in 2016, 57 sites monitored in 2017, 56 sites monitored in 2018, 52 sites monitored in 2019 and 50 sites monitored in 2020. We identified the species for 7,222 segments in total and 68 species occurred in 2014, 8,017 segments in total and 64 species occurred in 2015, 5,289 segments in total and 58 species occurred in 2016, 4,092 segments in total and 60 species occurred in 2017, 4,200 segments in total and 65 species occurred in 2018, 4,000 segments in total and 59 species occurred in 2019 and 3,900 segments in total and 56 species occurred in 2020. We are continuing to monitor and intend to update the dataset with new observations hereafter. Our dataset will help people to recognize the status and dynamics of avian assemblage inside the evacuation zone, and will contribute to promote open science in avian ecological studies.

Registros

Los datos en este recurso de evento de muestreo han sido publicados como Archivo Darwin Core(DwC-A), el cual es un formato estándar para compartir datos de biodiversidad como un conjunto de una o más tablas de datos. La tabla de datos del core contiene 2.071 registros.

también existen 1 tablas de datos de extensiones. Un registro en una extensión provee información adicional sobre un registro en el core. El número de registros en cada tabla de datos de la extensión se ilustra a continuación.

Event (core)
2071
Occurrence 
119726

Este IPT archiva los datos y, por lo tanto, sirve como repositorio de datos. Los datos y los metadatos del recurso están disponibles para su descarga en la sección descargas. La tabla versiones enumera otras versiones del recurso que se han puesto a disposición del público y permite seguir los cambios realizados en el recurso a lo largo del tiempo.

Versiones

La siguiente tabla muestra sólo las versiones publicadas del recurso que son de acceso público.

¿Cómo referenciar?

Los usuarios deben citar este trabajo de la siguiente manera:

Fukasawa K., Mishima Y., Yoshioka A., Kumada N., Totsu K.(2017) Acoustic monitoring data of avian species inside and outside the evacuation zone of the Fukushima Daiichi power plant accident. Ecological Research, 32(6), 769. doi:10.1007/s11284-017-1491-y

Derechos

Los usuarios deben respetar los siguientes derechos de uso:

El publicador y propietario de los derechos de este trabajo es National Institute of Genetics, ROIS. Esta obra está bajo una licencia Creative Commons de Atribución/Reconocimiento (CC-BY 4.0).

Registro GBIF

Este recurso ha sido registrado en GBIF con el siguiente UUID: 6fe80778-1b03-4f2c-a822-e62a998f321b.  National Institute of Genetics, ROIS publica este recurso y está registrado en GBIF como un publicador de datos avalado por GBIF Japan.

Palabras clave

Samplingevent; Fukushima Daiichi Nuclear Power Station; Agricultural landscape; Satoyama; depopulation; terrestrial bird; Japan; Samplingevent

Contactos

NIES Fukushima Terrestrial Ecosystem Monitoring Team
  • Proveedor De Los Metadatos
  • Originador
  • Punto De Contacto
Researcher
National Institute for Environmental Studies
16-2 Onogawa
305-8506 Tsukuba
Ibaraki
JP
Biodiversity Division
  • Punto De Contacto
National Institute for Environmental Studies
Keita Fukasawa
  • Autor
Researcher
National Institute for Environmental Studies
16-2 Onogawa
305-8506 Tsukuba
Ibaraki
JP
+8129-850-2676
Yoshio Mishima
  • Autor
Junior Research Associate
National Institute for Environmental Studies
16-2 Onogawa
305-8506 Tsukuba
Ibaraki
JP
Akira Yoshioka
  • Autor
Researcher
National Institute for Environmental Studies
10-2 Fukasaku
963-7700 Miharu
Fukushima
JP
Nao Kumada
  • Autor
Research Assistant
National Institute for Environmental Studies
16-2 Onogawa
305-8506 Tsukuba
Ibaraki
JP
Kumiko Totsu
  • Autor
Specialist (Database engineer)
National Institute for Environmental Studies
16-2 Onogawa
305-8506 Tsukuba
Ibaraki
JP
+8129-850-2894

Cobertura geográfica

Fukushima, Japan

Coordenadas límite Latitud Mínima Longitud Mínima [36,996, 140,537], Latitud Máxima Longitud Máxima [37,801, 141]

Cobertura taxonómica

No hay descripción disponible

Class Aves

Cobertura temporal

Fecha Inicial / Fecha Final 2014-05-22 / 2020-06-20

Métodos de muestreo

A digital voice recorder (DS-850, Olympus, Tokyo, Japan) was installed at each monitoring site during May–July in each year. The recorders were adjusted to timer-recording mode and recorded for 10 min before and after sunrise (total 20 min) every day until the batteries were depleted. The recorders were fixed to tripod stands at a height of about 0.9 m. The recorded data were split into 1-min segments in MP3 (124 kbps) format, which was treated as the minimum sample unit. We identified species of birds from acoustic data. Bioacoustics signals is a promised source of information for avian species identification (Lopes et al. 2011), and acoustic monitoring can produce similar result as traditional on-site survey methods in comparative ecological studies (Haselmayer & Quinn 2000; Hobson et al. 2002; Klingbeil & Willig 2015). Because the number of segments was very large, we chose a subset of segments evenly throughout the sampling period (8.08 days/site and 17.2 segments/day/site in 2014, 7.89 days/site and 17.8 segments/day/site in 2015, 5.74 days/site and 17.1 segments/day/site in 2016, 4.28 days/site and 16.8 segments/day/site in 2017, 3.75 days/site and 20 segments/day/site in 2018, 3.85 days/site and 20 segments/day/site in 2019 and 3.9 days/site and 20 segments/day/site in 2020, in average). A total of 7,222 of the 45,540 segments were chosen in 2014, 8,017 of the 46,440 segments were chosen in 2015, 5,289 of the 42,440 segments were chosen in 2016, 4,092 of the 46,680 segments were chosen in 2017, 4,200 of the 43,580 segments were chosen in 2018, 4,000 of the 42,720 segments were chosen in 2019 and 3,900 of the 44,759 segments were chosen in 2020. Species that appeared in each segment were identified by experts and their presence-absence was recorded. Some of the segments were identified through a citizen-scientific project, “Bird Data Challenge (Fukasawa et al. 2017)”, in which we listened to audio data and prepared a species list of birds with involvement of local citizen experts. Data identified through the Bird Data Challenge was checked by authors or other experts to correct misspecifications of species. We were careful to avoid the negative impact (e.g., pressure of photographing and illegal capture) on endangered and attractive species when we made the species distribution data accessible online. We left the location ID blank and assigned the mean latitude and longitude of the study area in the presence-absence records for endangered species (i.e., species ranked VU, EN, and CR in the National or Prefectural Red List) and species attracting particular public interest (Terpsiphone atrocaudata and Halcyon coromanda).

Área de Estudio The study area was located in the eastern part of Fukushima Prefecture, northeastern Japan, and was enclosed within the following four sets of coordinates: (37.80137°N, 140.53747°E), (37.80136°N, 141.00048°E), (36.99588°N, 141.00048°E), and (36.99588°N, 140.53747°E). The study area contained the evacuation zone, which has been categorized into three subzones since October 2013: a zone in preparation for lifting the evacuation order (<=20 mSv/year, Zone 1), a restricted residence area (20–50 mSv/year, Zone 2), and a difficult-to-return-to zone (> 50 mSv/year, after five years the air dose rate will be > 20 mSv/year, Zone 3). Zone 1 and 2 areas have been reviewed annually, and the evacuation order was canceled at all of our sampling sites in Zone 1 and Zone 2. We set up 52 monitoring sites inside and outside the evacuation zone in 2014 (33 sites outside the evacuation zone, six sites in Zone 1, seven sites in Zone 2, and six sites in Zone 3), which were the same as the insect monitoring sites used by Yoshioka et al. (2015). After that we set up 57 monitoring sites (33 sites outside the evacuation zone, eight sites in Zone 1, ten sites in Zone 2, and six sites in Zone 3) in 2015, 55 monitoring sites (33 sites outside the evacuation zone, six sites in Zone 1, ten sites in Zone 2, and six sites in Zone 3) in 2016, 57 monitoring sites (51 sites outside the evacuation zone, 6 sites in Zone 3) in 2017, 56 monitoring sites (50 sites outside the evacuation zone, 6 sites in Zone 3) in 2018, 52 monitoring sites (46 sites outside the evacuation zone, 6 sites in Zone 3) in 2019 and 50 monitoring sites (44 sites outside the evacuation zone, 6 sites in Zone 3) in 2020. All monitoring sites were located within schoolyards (including those that had been converted to community centers) to minimize differences in the local site conditions and to examine the bird assemblages in the urban and rural landscapes that were heavily altered by land abandonment due to the nuclear plant accident.
Control de Calidad All species were identified by the authors or by professional experts or local citizen experts. Core members of the local citizen experts belonged to chapters of the Wild Bird Society of Japan in Fukushima Prefecture. If we could not obtain sufficient information to identify a species from acoustic data, we recorded the next highest taxonomic level (e.g., genus) that could be specified with certainty. Scientific names followed the Ornithological Society of Japan (2012). Noise including rain sound was detected in acoustic records during the monitoring, which was indicated in 'eventRemarks'.

Descripción de la metodología paso a paso:

  1. (1) Presence-absence records with uncertain identification of species were removed.
  2. (2) Presence-absence records were summed up as daily data.

Referencias bibliográficas

  1. Fukasawa K, Mishima Y, Kumada N, Takenaka A, Yoshioka A, Katsumata K, Haga A, Kubo T, Tamaoki M (2017) Bird Data Challenge: new approach for cooperation between birders and researchers on acoustic identification. Bird Research 13: A15-A28. (in Japanese with English summary)
  2. Haselmayer J, Quinn JS (2000) A comparison of point counts and sound recording as bird survey methods in amazonian southeast Peru. The Condor 102: 887-893. DOI: doi:10.1650/0010-5422(2000)102[0887:ACOPCA]2.0.CO;2
  3. Hobson KA, Rempel RS, Greenwood H, Turnbull B, Van Wilgenburg SL (2002) Acoustic surveys of birds using electronic recordings: new potential from an omnidirectional microphone system. Wildl Soc Bull: 709-720.
  4. Klingbeil BT, Willig MR (2015) Bird biodiversity assessments in temperate forest: the value of point count versus acoustic monitoring protocols. PeerJ 3: e973. DOI: 10.7717/peerj.973
  5. Lopes MT, Gioppo LL, Higushi TT, Kaestner CA, Silla Jr CN, Koerich AL (2011) Automatic bird species identification for large number of species. Multimedia (ISM), 2011 IEEE International Symposium on: 117-122.
  6. Ornithological Society of Japan (2012) Check-list of Japanese birds: 7th revised edition. Ornithological Society of Japan, Tokyo (in Japanese)
  7. Yoshioka A, Mishima Y, Fukasawa K (2015) Pollinators and Other Flying Insects inside and outside the Fukushima Evacuation Zone. PLoS ONE 10: e0140957. DOI: 10.1371/journal.pone.0140957

Metadatos adicionales

Identificadores alternativos 6fe80778-1b03-4f2c-a822-e62a998f321b
https://www.gbif.jp/ipt/resource?r=nies_aafu